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SUMMARY

It is desired to compute the minimum-fuel attitude control of a
rigid body in orbit with bounds on the control components. The control
components enter the system differential equations linearly. Application
of the maximum principle of Pontryagin indicates that the form of the
control is a series of pulses. An extended version of the method of
steepest-descent is derived which enables the switching times of the
control pulses to be moved until an extremum value of the cost functional
is approximated.

The attitude acquisition problem of a satellite in an elliptical
orbit is selected as a potential application of this extended method of
steepest-descent. Trajectories computed by this method are compared both
with true optimal trajectories and with trajectories generated by an
idealized feedback control scheme.

The major benefits derived from the solution of the spacecraft
acquisition problem by the present method are that (1) a great deal is
learned about the effectiveness of the method in solving optimiza£ion
problems where the switching times of the bounded control components are
treated as control parameters, and (2) state trajectories for the
acquisition problem are generated which may be used for comparison
purposes when considering the worth of sub-optimal feedback control

schemes.
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I. INTRODUCTION

A. OUTLINE OF THE PROBLEM

The solutions of optimization problems can be found by a variety
of techniques. However, only a few of the known techniques are applicable
to problems which are nonlinear and of high-order. The present study is

:éoncerned with the construction of the optimal control for such a problen,

and it is assumed that the components of the control vector, u, , are

hiinded and that +ha nact Fraameatiarnal shad A Sa A hAa maAndmiead wnsr ko
A NS Ll A WA D A Savaaa waala v AU ar e LRy ) A AL LN W LN ¥Y Ll Ll PR U\ LA Al Lt A0 L LT Auu‘y LV
written as
t
f nm
Jlul = K E: d.lu.ldt (1-1)
5 it
t i=1
o
where to’ tf are fixed, di >0 and [ui| = Ui for i=1, ..., m.

The performance index (1-1) measures the consumption of control effort.
A further assumption is that the control components enter the system
differential equations linearly.

The form of the optimal control for the above complex system may be
deduced from the maximum principle of Pontryagin. Each of the control
components is seen to possess cycles of the following form: a time
interval of maximum effort of either polarity is followed by a time
interval of zero effort. The timing of these control pulses by selecting
the switching times at the beginning and at the end of each pulse is
studied in what follows.

A potentially effective means of solving this problem is provided by

the method of steepest-descent. This computational technique improves



on an initial guess of a nominal control time history until the problem
has been solved to a sufficiently high degree of accuracy. However, care
rust be taken, because this method does not guarantee convergence to an
extremal trajectory in state space. Also, only a local extremum value

of the functional, rather than the desired global minimum, may be
reached.

The manner in which the method of steepest-descent i1s used is influenced
by the selection of the form of the nominal control time history. If, on
one hand, the form of the control history is taken as some continuous
curve which satisfies the bounds on the control component magnitudes,
then one of the existing methods of steepest-descent may be used. If,
on the other hand, one takes advantage of the application of the maximum
principle to structure the form of the control history as a series of
pulses, and uses the switching times as control parameters, then an
extension to the existing method of steepest-descent must be made. The
development of such an extended method of steepest-descent will be found
in this report. Furthermore, various procedures for improving convergence
with this extended method are developed.

The minimum-fuel control of a spacecraft during attitude acquisition
presents a problem of the above kind. It is assumed that the spacecraft
is moving in an elliptical orbit. The task of the attitude control system
consists of orienting the spacecraft with respect to a specified set of
retference directions, starting from large initial deviations in the
spacecraft attitude and from bounded, but arbitrary, tumbling rates.

Since large attitude excursions and angular rates must be taken into

account the sixth-order system of dynamical equations describing the




Spacecraft attitude motions may not be linearized. (These equations are
derived in Chapter IV and in Appendix A.) Once acquisition has been
achieved, it is assumed that another means of control will be used for

"station keeping'.  This latter control means will not be considered here.
B. SUMMARY OF RELATED WORK

Minimumffuel optimization problems have received wide attention
in Fbg litepature in recent years. The systems that are examined are
usually linear and of low order: Scalar versions of the performance
indeg (l-l) are most chmonly'copsideredt The prchlom of desiguing a
singleiaxis rigid-body attitude controller to minimize control fuel con-
sumﬁtion is tréated iFVR?fi 1-1. The problem of minimal-fuel thrust
programmiqg for\the}vertiegl degcent Phase of a lunar soft landing mission
is qpnsidgrgd in Refj‘lfe. Fuel-optimal control of a nonlinear second
ordgr'system‘is>disqussed_in,Ref..lfS. The cost functional which is
minimizédﬁin,the;latter reference is

T?
I[u] =S. (k + Ju(t)] jat
: 2 ; o

wherg_the‘respopse_timey T, is not fixed and. k is.greater than zero.

Ké;ley”and:Brysop haye independently developed the gradient technique
or method of steepest-descent for optimization. problems [Ref. 1-k, 1-5].
Tﬁis approach has been used in reentry or boost vehicle-trajectory
optimization studiesywhere precomputation of an. open-loop control is
requirgd.

Recent publications on the spacecraft acquisition problem have dealt

with active or passive means of acquiring a desired orientation with



emphasis on stability. Magnetic attitude control of a spinning symmetric
satellite is presented in Ref. 2-2. The stable control law which is
developed in the reference is compared with a minimum-time optimal control.
Passive damping of the tumbling motion of a satellite 1is considered in

Ref. 3-2. The optimal attitude control of a tumbling satellite has

been treated by first optimally stopping the motion of the satellite

so that it has random orientation [Ref. 1-6] and then acquiring the
desired orientation by a control that is not necessarily optimal. A
sub-optimal control for the attitude acquisition problem is devised in
Ref. 3-1. There a control law is presented which contains several free

parameters whose values are optimized.
C. CONTRIBUTIONS

The following are the principal contributions of this study:

1. An extended version of the method of steepest-descent is
derived in Chapter V and Appendix B. This technique is useful in solving
optimization problems where the control components are bounded in mag-
nitude. The form that each solution takes on is a control time history
for each control component.

2. The effectiveness of this extended method of steepest-
descent is demonstrated. Chapter VII contains comparison between true
optimal trajectories and those generated by the modified steepest-descent
technique. Computational considerations which are unique to this class
of optimization problem are reported in Chapter VI and Appendix B.

3. A number of solutions to the minimum-fuel, attitude acquisition

problem are presented in Chapter VI and VII. By using these approximately




optimal solutions as design goals it is possible for the control engineer

to synthesize a satisfactory sub-optimal state-feedback control law.




IT. OPTIMAL CONTROL PROBLEM

A. PROBLEM FORMULATION

It is desired to select a piecewise-continuous "admissible"
control u(t) subject to the constraints w, sU ,i=1, ..., m for

the stationary, continuous system*
}.(i = fi(xl, oo ey Xn,ul, o0y um) 3 i = l, s ey n (2-1)

starting at the initial state E(to) at time to and finishing at the

final state E(tf) at the time t while minimizing a performance index

f
J = g fo(xl, EETIESPL PRI um)dt (2-2)

where u is an m vector and J 1is a scalar functional. If u(t)
can be found to meet these requirements, then E(t) is said to be the
optimal control. By defining an additional state, xo, the problem may

be restated as a problem of Mayer, where

io = fo(xl, ees XUy, e, um) (2-3)
with the initial condition x (t ) = 0 . Define an (n+l) vector X
with the components X sX)s oo X . Now minimize xo(tf) by selecting

an admissible control u(t) for the system of (n+l) first-order

equations:

X, = fi(xl, tees XsUys een, um) , i=0,1, «e.y, n (2-4)

x
What is stated here applies as well to a non-autonomous system
Xi = £3(X1, «eey Xp,ouy, ..., Uy, t) by defining another state xp4.] = t
and using this state in the non-autonomous system [Ref. 2-1].

6




which satisfies the initial and terminal boundary conditions.
In order to obtain the solution, define a vector A with n + 1

components Ao’xl’ ceny An and a scalar function, the Hamiltonian, by
n
H(A,x,u) Z (2-5)

where the state variables Xo’ cees X and the adjoint variables

ko’ %l, ooy An satisfy the Hamiltonian system:
X, = dﬂ/d/\ 5 Ay = - OH/ox, (2-6)
for 1i=0, 1,..., n . Note that since H is independent of X

7'\0 = 0 which implies that A is constant. As in Ref. 2-3, A, will
be chosen as Ao = -1 . Equation (2-6) represents 2n first-order
differential equations (omitting x  and %O). For the problem under
consideration, n initial and n final conditions are specified on the
states X, - The boundary conditions on %i are not known, but must be
chosen such that the boundary conditions on the states are met [Ref. 2-1].
The vector functions x(t) and A(t) are continuous, and have continuous
derivatives with respect to t, except at a finite number of points.

The maximum principle states that, if u*(t) is the optimal control,
and x*(t) is the corresponding solution, then it is necessary that there
exist a nonzero vector function A*(t) such that H(A*,x*,u*) = H(A*,x*,u)
for any admissible u* and u . However, the maximum principle gives

only necessary, but not sufficient, conditions.



B. FORM OF OPTIMAL CONTROL

For the performance index and the class of systems investigated
here, the form of the optimal control may exhibit well defined behavior
when the maximum principle is applied; however, there exists a possibility

of ‘rregular behavior which must be considered as well.

1. Regular Form
Since this study is concerned with a minimum-fuel problem

is a three-dimensional vector,

where U
3
- N -
£ =) di|ui| (2-7)
i=1
where
d, >0, |u1| = U, for i=1,2,3
For this problem the Hamiltonian (2-5) is written
3
H=o ) (agfw] + Agug) + (2-8)
i=1

where the fact that %O -1 has been used and terms independent of u.

liuve been dropped.*
Applying the maximum principle to the control components in (2-8)

leads to the control law [Ref. 2-3]

*
The differential equations of the system, developed below, (4-4) or
(L -6), have been incorporated into the Hemiltonian with an appropriate re-
indexings so that the Xy, ..., Xp4] numbering of Chapter IV will be
system of Chapter II.

compatible with X4, X1, ..., X,




U, sgn(%i) , for |Ki| z d,

ui(t) = (2_9)
0 , for ]X.l < 4,
i i

A typical time history of one of the control components might look like

that in Figure. 2-1.

Ui(')

e
-

ol ]

FIGURE 2-1. TYPICAL TIME HISTORY OF
A CONTROL COMPONENT

2. Singular Control

Certain classes of problems which appear to possess a bang-bang
form for the optimal control after application of the necessary conditions
of the maximum principle may actually require intervals of variable con-
trol effort (called "singular" control) for an optimum to be reached
[Ref. 2-4]. For example, in the minimum-fuel problem characterized by
the Hamiltonian of expression (2-8) a singular control may exist. If for
some finite interval tl £t = t2 one of the adjoint variables
Xi(t) =d, , then H will be a maximm for any ui(t) in the interval
0 = ui(t) = U, . The control law (2-9) should then be modified to include

this possibility; however, in this study only nonsingular controls will

will be considered.

*The function sgn(x) (read signum of x) is defined as sgn(x)= TET .



3. Indifference Regions

Attitude control problems, such as the one to be considered,
may involve periodic state variables, these describing the rotation of
the rigid body. If, for instance, the rotation of a shaft were to be
controlled about its longitudinal axis so that some mark on the surface
pointed upward, and if the rotation of the shaft about its axis were
selected as a state Xy then a desired terminal value for Xy would
be + omrn, (n=0,1,...) . Since there exist many acceptable terminal
states, there eiist many alternative control histories which satisfy the
form dictated by the maximum principle and also lead to the desired
terminal states [Ref. 2-5]. Further analysis must be performed to see
which one of these alternative control histories minimizes the cost
functional. Indeed, there exist some regions of initial conditions,
called indifference regions, for which the choice of optimal control is
not unigue. To avoid the possibility of encountering such regions in
this analysis, the range of initial conditions will be kept reasonably
small, though not so small as to preclude the need for the full nonlinear

dynamical equations.

C. SYNTHESIS OF CONTROLLER
Application of the maximum principle usually results in an open-
loop control u = u(t) . Additional work is required to obtain the more
desirable feedback control law u = u(x) - However, the optimal controller
miy be too complex. As a result, a simpler feedback control law which per-
forms in a near optimal fashion may be an acceptable alternative.
The open-loop optimal control u = u(t) can be obtained by numerically

solving the two-point boundary-value problem on a high-speed digital

10




computer. This solution may or may not be optimal, depending upon con-
vergence properties of the chosen computational scheme. This general
technique applies to many of the most complex optimization problens.
The method of steepest-descent has been selected as the most feasible
method of solving by iteration the problems considered in this text.

If these systems are simple enough, an optimal feedback control law
u = E(;) can be obtained by examining the general solution to the adjoint
differential equations and the form of the switching surfaces which are
generated in state space [Ref. 2-1, 2-3]. Sub-optimal feedback control
laws may be deduced for linear, low-order, time-invariant systems. A
linear function of the states, or a piecewise approximation of the switching
surfaces, or a polynomial approximation of the adjoint vector obtained from
a simplified version of the cost functional have been tried with success
[Ref. 2-6, 2-7, 2-8, 2-9, 2-10].

A common technique of control law synthesis is to postulate a simple
control law which contains several free parameters [Ref. 2-11] . The
control parameters are varied until an extremum value of the cost functional

is reached.

11




IIT. AN APPLICATION OF OPTIMAL CONTROL THEORY

The minimum-fuel acquisition problem, which is for the most part
unsolved, possesses the desired characteristics for the application of
the extended method of steepest-descent. The mathematical model of the
sutellite is highly nonlinear, is of high-order, possesses time varying
coefticients in some cases, and has bounds on the control component
magnitudes. When using the method of steepest-descent, a stopping con-
dition is required. Final time provides a logical and simple stopping
condition for forward integration of the differential equations in this
text. If it were desired to use this technique for minimum-time problems
where the final time was not known, it would be much more difficult to
express the stopping condition.

The essential purpose of this study is first to gain insight into the
steepest-descent method of solving a high-order nonlinear optimization
problem and second to obtain further understanding of the optimal control
systems design for spacecraft acquisition. It is certainly not feasible
at present to compute the attitude control on-board the spacecraft as
would be required by the method of steepest-descent; however, in the
future with larger spacecraft, and with higher-capacity, higher-speed
dirital computers such a scheme may prove feasible. One distinct and
important benefit of applying the method of steepest-descent to this
vroblem is that optimal trajectories may be generated in the initial
design phase for a finite set of representative initial conditions and that
these optimal solutions may be used as goals or standards which the
designer could attempt to meet when synthesizing a sub-optimal control

schene.
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Iv. SYSTEM EQUATIONS

In Appendix A, coordinate systems are introduced and the equations
of motion of a satellite are derived. In addition, the cost functional
for optimal control is discussed and the adjoint equations are developed.
Since the attitude maneuvers during acquisition will be large, the
dynamical equations will be retained in their nonlinear form. Elliptical
orbits for this study may possess arbitrary values of eccentricity within
the limits 0<e<l ; and therefore, no linearization of the orbit equa-
tions will be attemped. Two distinct cases, which result in markedly
different equations, will be considered: 1) the control torque is assumed
of the order of magnitude of the gravity gradient disturbance torque and
the assumed goal of the acquisition control is to steer to a rotating
orbital reference frame; 2) the control torque is assumed high enough
so that the gravity gradient torque may be ignored, and the time of
acquistion is so short due to the high control torgue that for all
practical purposes the orbital reference frame can be considered inert-
ially fixed. These two sets of equations are summarized in the following
paragraphs.

For convenience the state-space notation is adopted in this chapter,
where the set of differential equations is written in a first-order vector

differential equation form:

x = f(x,u,t)

with initial and terminal conditions on all of the states at to and tf
specified. By defining the orbital parameters as states for the purpose
of numerical integration, the matrix equation above may be written in

13



autonomous form as:
) = x. . (4-1)

In this representation the following definitions are used:

k3 T —J 7]
%, X5
Xg Xg
X, X,

X = Xg = | W (4-2)

Xg W,
Xo Wy
Xg W,
X v

%10 LR |

J 1is the cost functional, and V and R the orbital parameters [see
(A-2)]. J and X5 XzoX), have been conveniently time normalized by

(A-1). 1In addition:

ol
u = = n + n n -
u u, Wl U, U (4-3)
Uz
so that
ul = ux , u2 = U and u3 = uz
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A. LOW TORQUE ROTATING ORBITAL REFERENCE FRAME

Two sets of equations are to be written, as discussed in the
introductory remarks in this chapter. For the low torque, rotating
orbital-reference-frame case the following egquations are obtained upon
changing the time variable and using (A-14), (A-18), (A-19), (A-22) and
(4-3):

b'd = dllull + d2]u2| + d3|u3|

. 3

~y — T 1
P d

= Uy

v - - - N _ /. - 3 \
(. )3 fxP21%31 13 \8zzXg = 8525 )
10

)

- ! 1
Kx(x5 + 6 a23)(xh +0'a,,

3

S ) K 211851 = 9855 + 0" (a5, - azx;)
*10
- K:y(xlL + G’ass)(xg + e'als)
t — 3 - 1] 1 o
X = Ut (x.)° K 8118 = 07855 + 0' (e, - ayxg) | (h-h)
*10
- Kz(x2 + G'als)(x3 + 6'a23)
xé = 1/2(x2x8 - Xg%, ¥+ xux6)
xé = l/2(x2x7 + xgXg - XMXS)
x% = l/2(-x2x6 * XgXg + xux8)
x§ = l/2(—x2x5 - XgXp - x4x7)
2 3
xy == 0l + (1= €)/xy)
Xlé = X9
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Initial conditions ;(To) = ;5 are arbitrary with the exception of:

) =0 X8(TO) subject to the constraint (A-16) which is

Xl(To

rewritten

8
]
;ﬁxf =4 (4-5)
/.01
i=5
and the orbital parameters X9(To) and XlO(TO) having to satisfy
(A-3).
In most cases desired terminal conditions at 7 = Te are for
XL(Tf) to be a minimum; and for X2(Tf) = ., = X7(Tf) =0 ; for

x8(Tf) =2 3 and for X9(Tf) and XlO(Tf) to be as determined by
the above mentioned orbital quations.
The quantities 6',6" and 8, in (4-4) are expressed in terms

of the states by (A-4) and (A-17).

B. HIGH TORQUE, INERTIAL ORBITAL REFERENCE FRAME

The equations for the high torgque case are considerably simpler
since the expressions for the gravity gradient may be ignored, the need
for orbital parameters dropped, and the terms which describe the rota-
tion of the orbital reference frame in (A-14) ignored. Instead of the
ten-element state vector in (4-2) an eight-element vector containing all
but the last two elements may be considered for this case. By making
use of the new state vector the following time normalized equations may

be written:
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xi = dllull + dglugl + d5|u3| ;,
xé = uy - Kx.x,
xé = Uy - KyXQXM
x& = Uz - K x,x,
xé = l/2(x2x8 - Xz, ¥ th6) ; (4-6)
Xt = 1/2(x2x7 + X Xg - XAXS) ;
x% = 1/2(-x2x6 + XgXg th8) E
X3 = l/2(-x2x5 - XgXp - xux7) i
i

The initial conditions and terminal conditions are indentical with those
for the prior set of equations (4-4), but this time for the eight-element

state vector.
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V. METHOD OF STEEPEST-DESCENT

This chapter presents a brief summary of the method of steepest-
descent. Conventionally, this method, based on the first variation, is
used to find by iteration a solution of a two-point boundary value
problem in the calculus of variations. The solution will usually be in
the form of a control history as a function of time which will achieve
a local extremum of some performance functional while meeting specific
constraints. An advantage of this method is that even though a rela-
tively poor guess is made for the control history, convergence to near
optimum may be achieved after some iterations.

There are many variations on the method of steepest-descent due to
the system models considered and to the manner in which the method can
be applied. In this chapter several ways will be discussed in which
the method can be used for solving problems with no constraints on the
state or control variables. Also the required modifications will be
discussed when bounds on the control variables are encountered and use
is to be made of the knowledge that the form of the control is a series

of pulses.

A. PRELIMINARY DEVELOPMENTS

First, expressions are derived which relate the effect of a
sniall variation in the initial state and the effect of variations in the
control history upon the terminal constraints. As will be seen, the
nction of influence functions or adjoint variables will play an integral

role here. Small variations in an unbounded control as well as a
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finite number of "strong" variations* in a bounded control history over
a short time period will be considered in arriving at the desired
expression. In addition an expression for the mean square variation of
the control variable will be written down.

The Mayer formulation of the optimization problem is to determine

the control E(t) which minimizes, in the interval toStStf ; the cost
functional
I = Alx(t,)] (5-1)

while satisfying the system equations x = f(x,u,t) for t in the
interval tOStStf » and the constraint equations | = E[x(tf)] =0

with the quantities ;(to) » b, and t.** given. In this description

L) = "ul(t)‘

u (t)
j_ m .
is an m-vector of control variables which may be freely chosen within
an open or a closed set,

x(t) = xl(t)

.

x;(t)

L -

*Discontinuities in the control time history will be allowed. When
these "strong" variations in control occur it will not be possible to
differentiate and form such expressions as afi(x,u,t)/au‘j .

**The assumption that t, is fixed is made here to simplify the
analysis. This assumption is not restrictive for this study as minimum-
fuel problems are to be considered, which require a fixed tf
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is an n-vector of state variable histories which result from given values

§(to) and a choice of u(t) ,

T = —fﬂ

is an n-vector of known functions of x(t) , u(t) and t , assumed
everywhere differentiasble with respect to x and u , when u lies in
an open set, and assumed everywhere differentiable with respect to x

only, when u 1lies in a closed set,

# = the performance index and is a known function of x(t) ,
p = by
k3

is a p-vector of terminal constraint functions, each of which is a known

function of ;(tf) and is assumed everywhere differentiable with respect

to x , with p =n .

1. Unbounded Control

It is appropriate first to consider the case where u is

not bounded. Introducing the deviation from the nominal (chosen) ;n

5 = X-%, 5 G-=u-u (5-2)
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A

the differential equation X = F in (5-1) may be linearized about En s

u and written as

n
& = F(t)dx + G(t)8u (5-3)
where
F(t) = VX?|;n= Bfl/axl R Bfl/axn
afn/axl “ .. afn/axn
X
n

isan nxn matrix of partial derivatives evaluated on the nominal state

trajectory Eﬁ

= VT|_ = .
G(t) ufl - afl/aul afl/aum
n
_afn/aul C. afn/aum_J )
X
n
isan m X n matrix of partial derivatives evaluated on ;% . As stated

in [Ref. 5-1] the solution to (5-3) may be written as

t
sx(t) = @(t,to)5§(to)+ fo(t,r)c(r)sﬂ(r)dr (5-4)

t
o]

where (I>(t,to) is called the state transition matrix. o(. , .) exhibits

the following pertinent properties:

21



_ae(t,7) = F(t)e(t,T) , (5-5)

at

dae(r,t) = - o(t,t)F(t) (5-6)

dt

o(t,t) = I , (5-7)
o(t,e)o(E,1) = o(t,T) . (5-8)

An expression relating the effect of a small variation in state and
control to the final variation in state is next required. By letting

t=t, ,eand t =t (t is & running variable) in (5-4), one is lead

f

to
t
SEf = ¢(t t) '*JF f,T)G )sult)ar , (5-9)
’ t

A smell veriation, 8@ » in the terminal constraint leads to the
expression

& = (Vu)ly ox, (5-10)

nf

where

vy = rbq; fox. ... Bw/ax—

X 17771 1"n

ay_/ox, . . . Oy /o
| 3y/0xy b/ 9% |

Let us define

M(t,t) = (TBlz  ot,,t) (5-11)
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where ( )T = the transpose operation and

matrix called "the influence matrix"

T
A (tf:t) = a (p X n) or
"matrix of influence coefficients".

Upon differentiating (5-11) with respect to t , and using (5-6) and

(5-11), the following set of adjoint differential equations is obtained:

K(ept) = - a%(eg0)m(t) (5-12)

with the boundary conditions at + = %_ from {5-11) and (5-7):

T -
A (tp,t,) = (v;w)t%ﬁ‘ (5-13)

The adjoint equations (5-12) may be integrated in reverse time from

t = tf with the boundary conditions (5-13).

Finally, the desired sensitivity relationship between 8&x,8u and

8 is formed by using (5-9), (5-10) and (5-11):

te

8F = AT(t,,5)8%(t) +\/PAT(tf,T)G(T)sa(T)dT . (5-14)
t

The variable t could be set equal to to (in which case S;(to) =0
from (5-1)), it could be a continuous running variable, or t could
possess discrete values tk ; k=1,...,r where tk is contained in
to = tk< tf . Allowing t to be a continuous or a "sampled" variable
may improve convergence when using the method of steepest-descent.
Recommendations based on results are presented in Chapter VI concerning

this possibility.
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An equation for the "mean-square" variation in control V is

written as:

be

v(s,) = f Satw( 7)adt (5-15)

t
o

where W(t) is an arbitrary symmetric positive definite matrix. If the
value of V is "small" then the variations in control are "small" and

all of the above assumptions which prompted the development of the
sensitivity relationships will remain valid. The selection of how W(t)
changes as & function of time is important for some problems where
parameters change widely over the range of the problem solution [Ref. 5-2].
In the case of more than one control variasble it must be decided how to
weight relatively the different control variable changes at a given

instant in time as well [Ref. 5-10].

- 2. Bounded Control

Many problems contain bounds on the magnitude of the com-
ponents of the control vector. For this study it is assumed that

|ui| =U i=1,2,3 . For certain cost functionals, e.g., minimum-

i )

fuel or certain forms of the minimum-fuel problem, the necessary condi-

tions of the maximum principle state that uy will be discontinuous, and

will be on full in a plus or minus direction, or off. Components of the
differential "constraint” X = F in (5-1) will contain terms such as |[u, |
and will therefore not be differentiable in those arguments. The con-
cept of the strong variation is introduced here where a finite number of

large changes in u, are allowed, each change occuring over a short

i

time th . The variations in uy will cause large variations in the
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slope of the state trajectories.

The first step in the following derivation is to obtain an expression
similar to (5-4) which relates a variation in Eﬁ(to) and a large
variation in control, ®u , to the variation in §n(t) . First consider
the variation in En resulting only from a single large variation in

control, ®u , occuring between t. and (td + Std) . As a result

d

of this variation in control the new trajectory x might be generated

as in Figure 5-1.

g gty

FIGURE 5-1. VARIATION IN STATE RESULTING FROM
STRONG VARIATION IN CONTROL FOR
THE SCALAR CASE

The nominal control switching time which occurs at t = td and causes

the discontinuous slope in ;n is changed to t =t. + 5td . This new

d

switching time represents a new control E(t) and generates the new
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trajectory E(t) . Upto t = td the variation in Eh is zero. As

seen from the figure, the expression for 8 at t = td + Std , to

first order, may be written as

Bx(t, + 8t,) = [F(x,u (£7),%,) - ?(Eﬁ,ﬁn(tg),td)]Btd ) (5-16)

ol n’ n' d d

Since no further variations in control are encountered, 8x at
t = td + Std will be transmitted through time by the state transition

matrix in the following form:

sx(t) = o(t,t. + atd)SE(td +8t.) , for t=t, + 8ty - (5-17)

d d d

Since the state trajectories x(t) or xn(t) are continuous and Btd

is small, equation (5-17) may be written as:
x(t) = @(t,td)bx(td + 6td) (5-18)
Combining (5-16) and (5-18), an expression is obtained which relates a

single strong variation in control to &x(t)

() = o(t,t ) - ?+]8td (5-19)

where use has been made of the following definition:

_ +
- = f[xn,un(td), t.] (5-20)

Next, by assuming that more strong variations in control exist, as well
as a variation in the initial conditions at t = to , an equation

similar to (5-4) is written:

dx(t) = @(t,to)ai(to) 4—§:¢(t,ti)[?' - ?+]6ti , (5-21)

i
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where the summation is taken over each of the switching points of the
control, with to = ti =t
An expression similar to (5-9), which relates the effect of a small

variation in state and strong variations in control, is derived by letting

t=t, and t, =t in (5-21):

x, = @(tf,t)Sx(t)-+§Z®(tf,ti)G(ti)6u(ti) (5-22)
i
where t = t1 = tf . The identify
—, R —t
g(ti)Su(ti) =[f - T Jot; (5-23)

has been introduced for énalytical and computational convenience.* This
identity should be used for computing G(ti) .

The last step in the present derivation is to write the desired
sensitivity relationship, similar to (5-14), for the bounded control
case. Premultiplying (5-22) by (V)= and using (5-10) and (5-11)

nf
one obtains:

8y = AT(tf,t)8§(t)-+}§A?(tf,ti)a(ti)56(ti) (5-24)
i

The presence of the strong variations in 8&u 1is reflected in the above
sumation.
An equation for the "mean-square" variation in control similar to

(5-17) is written as

¥The details of digital simulation are not discussed in this study.
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-1 —
v(t,) = Z Bu” (t, )T, Bu(t,) (5-25)
i
where Ti = T(ti) and where the summation extends over all switching
times in interval to =t =t

f

B. STEEPEST-DESCENT TECHNIQUES

Various ways are described here in which the basic sensitivity
relationships developed above may be used to derive equations which
indicate how the control history is to be changed in order to meet a
desired terminal constraint while minimizing a specific cost functional.

Several alternative paths are followed in this develcpment. The
technique introduced by Kelley incorporates a penalty function treatment
of the terminal constraints [Ref. 5-3]. The new functional that is to

be minimized is written

Y
J¥* = ﬂ[i(tf)] + Z viq,f (5-26)

i=1
where v is a (p X 1) vector of positive constants. Kelley then
minimizes J%* subject to a given value of an integral similar to V(to)
of expressioﬁ (5-15). This technique will satisfy the terminal constraint
E only approximately. Bryson and Denham minimize the first variation of
the original functional @ subject to a specific value of V(to) in
equation (5-15) and to a specific value of &} [Ref. 5-4]. The success
of this latter method, as measured by the rate of convergence to a
solution of the boundary value problem, is strongly influenced by the
choice of V(to) .
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A further development by Bryson and Denham and a modification by
Rosenbaum seem to offer the most promise and will be followed in this
study [Ref. 5-5 and 5-6]. The integral V(to) is minimized subject to
the constraint 5@ ; where the vector E has been augmented by adding
the cost functional @ . Experience has lead to the recommendation
that no attempt be made to improve the cost functional during the first
few iterations until the terminal constraints are met [Ref. 5-6]. Upon
satisfaction of the terminal constraint a reduction or increase in the
cost functional may be specified and further iterations performed until
a satisfactory problem solution is found. The derivation of the desired
control equations is found in Appendix B. 1In addition a computational
algorithm is presented in Appendix B.

Several authors have touched on problems with bounded control and
some of these have considered moving the switching times preserving the
original "bang-bang" form of the control time history [Ref. 5-3, 5-7,
and 5-81%. One auther [Ref. 5-8] assumes that the derivatives afi/auj
exist while one [Ref. 5-3] makes no such assumption. An important set
of obervations is made in Ref. 5-8: if the switching times are to be
treated as control parameters then there must exist at least as many
switching times as the p + 1 elements of the augmented constraint
vector E . There must also exist at least as many switching times as
in the optimal solution. If two switching times become equal in the
1imit then the total number of assumed switching times may become less

than the optimal number which will create an uncontrollable situation.

¥[Ref. 5-9] has recently been received. The presentation in this
reference is quite similar to some of the analytical developments in this
report.
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Also, by choosing the switching times as control parameters, the possi-
bility of finding singular solutions to the two-point boundary-value
problem is precluded. To be able to search out a singular solution a
form of the control consistent with singular sub-arcs must be assumed.
This latter alternative will not be followed in this study.

Potential difficulties arise with the computation of the inverse
matrices in (B-12) and (B-21). If t, 1is alloved to become a running
variable t , and t approaches tf then these matrices will become
singular. In addition, as an extremal solution is reached then these
matrices may become singular implying from (B-12) and (B-21) that it
would take an infinite amount of control variation to improve the
extremum value of the cost function [Ref. 5-5]. The matrix D(to) of
(B-21) will in most cases not become singular when the optimal solution
is reached* because the control has been simulated by a series of pulses,
and each of the switching times are required to occur at t = ti where

t =t, =1t . More will be said about this characteristic in Chapter

¥Even if the exact optimal switching times are reached, D(t )
may not become singular. ©
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VI. ACQUISITION PROBLEM: HIGH CONTROL TORQUE, INERTIAL REFERENCE FRAME

The mathematical model of the system studied in this chapter is
described by equation (4-6) and in Table (A-27). The control torque

levels are high enough to ignore all other disturbances such as gravity

gradient.

A. TIDEALIZED PROPORTIONAL CONTROL

K
- RALS-04 Yeiad

An idealized feedback control law, the performance of whi
be compared with that of an open-loop minimum-fuel control generated by
the method of steepest-descent, is found in Ref. 3-1. This control law

is written in scalar form with the state space notation of (4-2) and

(4-3) as:

u, = - kyx, - (Qkp/xg)(xs/li)
uy, = - kyxg - (2kp/x§)(x6/lfr) (6-1)
ug = - kgx) - (2kp/x§)(x7/li)

where ki, i=1,2,3 are the rate gains and kp is the position gain.
It is assumed that there exist no bounds on the magnitudes of the compo-
nents of control torque for this idealized control law. When the total
equivalent rotation ¢ equals 180 degrees, then Xg = 0O and the
magnitude of the control vector u becomes infinite. 1In this report
initial values will be chosen which have sufficiently small magnitudes
so that the state trajectories will avoid the singularity in equations
(6-1). It has been shown that if the rate gains ki» Ky, ko and the
position gain kp are all greater than zero, then the equilibrium point
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(x2 ==X, = 0) of the system of equations (4-6) and (6-1) is
asymptotically stable in the large [Ref. 3-1]¥*. This desirable stability
feature of control law (6-1) makes it an excellent choice for a prelim-
inary design.

Satellite parameters, based on a preliminary model of the OGO

Spacecraft [Ref. 6-2] are found in Table I:

Principle Moments of Inertia Parameters

Inertia, slug ft2

I = 800 K = -.35125
X X

I = 581 K = .86058
y y

I = 300 K = -.73000
Z 2z

Table I. OGO Spacecraft Parameters

The four gains kl,kg,k3 and kp are selected such that the
transient response of the system to a set of initial conditions will
bring the satellite to within an acceptable distance of the desired
equilibrium point in approximately 300 seconds.¥* This acceptable
distance from the equilibrium point is taken as

7 1/2
> x? < 107° (6-2)

where the three rates X590 Xz X), are in deg/sec.

*See [Ref. 6-1] for a discussion of stability definitions.

**¥An orbit of this satellite will take about 100 minutes.
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To select values for the gains the system and control equations
are linearized about the desired equilibrium point, resulting in three
uncoupled, damped escillators. The three damping ratios are chosen as

- .707. Using the moments of inertia in Table I, the desired settling
time of 300 seconds and the above damping ratios, one calculates the

four gains which are listed in Table II.

=
Gains
Position i Rate
. 2 2 2 -1
Kp = 1730 1b~ sec™ ft kl = .0258 sec
: -1
k = .0355 sec
2
-1
k3 = .0685 sec

Teble II. Control Gains for Equation (6-1)

Certain bounds are placed on the range of initial conditions. Each
of the three initial rates shall have a magnitude less than or equal to
One degree per second. These rates represent typical design specifica-
tions for the acquisition phase [Ref. 6-3]. The maximum initial rotation

¢(to) is selected to be less than or equal to 75 degrees. This is
done so that preliminary guesses on the control time history for the
method of steepest-descent‘will only occasionally approach the singularity
which ofcurs when {(t) = 180 deg. A search was made over the range of
these allowable initial conditions and it was found that the norm of the

maximum initial control vector was equal to:
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Iw(e) IF =715 deg/sec” (6-3)

when using the gains in Table II. This initial magnitude (6-3) is about
eight times larger than the actual, bounded control vector magnitude on
the OGO spacecraft. The weights dl,dz,d3 in the first equation of
(4-6) are taken to be equal to one.

A number of sets of initial conditions were selected within the
above limits and runs were made on the digital computer, using the
differential equations (4-6) and the control law (6-1). These runs are
summarized in Table III, where the initial conditions are listed, as well
as the initial rotation ¢(to) . The norm of the control vector at

t = to has been included in this table for comparison purposes with
the maximum figure stated in (6-5). The value of the cost functional
in rad/sec is listed at t = tf » Where tf is the time at which the
norm of the state vector has settled to within the value in (6-2).

Response curves are plotted for Runs R-1 and R-2 in Table IIT and
are found in Figures 6-1 and 6-7. The same dimensions will be found on
each of the response curves in this text, and are summarized in Table IV.
In addition to the response curves in each of the figures, a scheme is
included to portray the orientation of the spacecraft at three times
during the transient response. As an example see Figure 6-1b. The
location of the center of the three circles above the T axis indicates
the time at which each of the three orientations are described. The
three times chosen in this example are therefore O, 90, and 180 sec.
Each of the circles represent unit circles lying in the plane of the
orbit, centered at the center of mass of the satellite. Directions are

important on these circles; to the right (parallel to the T axis)
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Table III. Summary of Runs with Control Law (6-1).

Run R-1 R-2 R-3 R-k R-5
x(to)
-1
xl sy sec 0] 0 0 0 0
x2 s deg/sec 1 .5 0 0 1
Xz deg/sec 1 .5 0 0 1
x, , deg/sec 1 .5 o 0 1
Xs L 5 0 L 0
x6 8 .5 0 8 0
Xy 8 5 1.2 8 0]
Xg 1.6 1.8 1.6 1.6 2
¢(t0) , deg 73.8 51.8 73.8 73.8 0
IR ), dee/sec? 524 | 236 Gk | ks | o8y
t, » sec 0 0 0 0 0
te , sec 288 360 180 276 372
xl(tf) s sec™t .260 142 .158 175 .0954
Plot in Figure: 6-1 6-7 - - -
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Table IV. Notation and Dimensions for Response Curves

Original State .
Plot Nomenclature Sumbols Notation Dimensions
T t t sec
OMEGA1 X5 X, deg/sec
OMEGA?2 Xz Xz deg/sec
OMEGA 3 x), x), deg/sec
Wl Wl x5 -
w2 W2 x6 -
W3 W3 x7 -
J J X, sect
Wh W, Xg -
Uvl u u deg/sec2
: X 1
uv2 u u deg/sec2
y 2
uv3 u u deg/sec2
z 3

corresponds to the direction of the X, axis of Figure 4-1; toward the
top of the paper, (parallel to the UVl axis) corresponds to the direc-
tion of the Ye axis; and upward out of the paper corresponds to the
direction of the z, axis. The projections of the three body fixed

unit vectors nxb 5 nyb and nzb onto the plane of the unit circle
are shown in each of the figures, with a vector being projected from

above or lying in the plane of the unit circle being denoted by a solid
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line, and being projected from below by a dashed line. The three unit

vectors are identified by: a circle for Exb , an x for Hyb , and

a triangle for n No identification is given to a vector if its

zb
projection is small, as seen in the middle circle in Figure 6-1b. The
projections of the unit vectors on the circle on the right in Figure 6-1b
indicate that the desired orientation has almost been achieved at

t = 180 sec., since the ;;b

X, direction and the E&b vector has nearly approached the ¥y direction.

unit vector has nearly approached the

B. STEEPEST-DESCENT
l. Results

The extended method of steepest-descent was used to iterate
as close as possible to a minimum-fuel solution for the sets of initial
conditions described in Table III. The welights di , for 1 =1,2,3 ,
are taken as one. The bounds on the components of the control vector
were chosen initially to provide equal acceleration levels. It was
decided to select the norm of the control vector to be of the same
magnitude as (6—3) and so each of the three bounds were set at .412 deg/

sece. The E vector of (B-1) is written for this problem as

r’cl(tf) - %4

xg(tf)

_x7(tf) _
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therefore, the terminal conditions for the adjoint system (5-14) may be

written as the 7X7 matrix

1 0]

T
A (tf,tf) =

0] l._l .

Various computer runs were made using the method of steepest-
descent. Since no proof of convergence is available for the solution of
the acquisition problem by the method of steepest-descent, many different
cases will be examined. By selecting a wide variety of cases a great
deal will be learned about the convergence properties. The initial
conditions of Run R-1, Table III were used as the basis for a number of
the following runs: Figures 6-2 shows the response of the system to an
initial, arbitrary guess of the switching times with to =0 and
tf = 60 sec. Nineteen iterations later* the response in Figure 6-3 is
obtained with a fuel consumption of .1617 sec™t Figure 6-4 shows
the response after 15 iterations when the bounds on the control components
are set equal to .206 deg/sec2 and t, = 60 sec . The fuel consumption
is .1595 sec-l » which is within 1.4% of the above fuel consumption.
Comparison of Figures 6-3 and 6-4 shows that the response curves are
almost identical. Even though different sets of initial control time
histories were used to generate the steepest descent solutions of
Figures 6-3 and 6-4, the solutions converged to the same extremum value

of J(tf) . Perhaps some other relative extremum value existed; however,

no indication of this possibility was found.

*An iteration taekes approximately 30 sec on the Burroughs B-5500
digital computer for the mathematical model considered in this chapter.
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Using the lower set of control bounds two more responses are
obtained: Table V, coupled with Figure 6-5 show that after 26 iterations
with t, = 45 sec the fuel consumption is .1969 sec™’ , and with
Figure 6-6 that after 11 iterations and t, = 120 sec, .102k4 sec™t  fuel
is consumed. These quantities of fuel consumption are normalized with
respect to the value .260 rsec_1 » and plotted in Figure 6-10, curve B
as a function of tf . The quantity .260 sec'-l is the amount of fuel
consumed by the idealized proportional control which has "settled" at
tf = 288 sec . See Table V for a sumnary of this data. The shape
of this curve is as expected [Ref. 2-3, 2-8]. As can be seen from this
curve of fuel consumption vs. tf » the minimum-fuel solution at

tp = 120 sec  uses only 40% of the amount of fuel consumed by the
idealized proportional control. Comparing the relative angular rates
between the idealized proportional control scheme of Figure 6-1 and the
minimum-fuel solutions of Figure 6-4, 6-5 and 6-6 indicates that they
are appfoximately equal if tf = 45 sec and are much lower in the
minimum-fuel solution if tf = 120 sec .

To examine the effectiveness of the methbd of steepest-descent
under an off-nominal design condition a different set of initial condi-

tions are chosen (see Run R-2, Table III), as well as a set of unequal

acceleration bounds. These bounds are:

.552 deg/sec2

lullmax -
2
luEImax = .403 deg/sec
2
|u5|max = .207 deg/sec
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The norm of the maximum control vector is again .715 deg/sec2

Figure 6-8 shows the response to an initial guess of control switching
times with tf = 60 sec . After 18 iterations, the solution may be
found in Figure 6-9, where the fuel consumption is .1075 sec'l . The
method of steepest-descent appears to work as well for this off-nominal
system as for the system which has equal control bounds. A curve of fuel
consumption vs. tf is generated for this set of initial conditions and
is normalized with respect to the fuel-consumption in Run R-2 of Table
IIT of .1lk2 sec-l in 360 sec . This curve is plotted in Figure 6-10,
Curve A. As long as tf > 39 sec the minimum-fuel solution will consume
less fuel than the idealized proportional control scheme. The data for
this curve are summarized in Table V.

Several more sets of initial conditions are examined using the
method of steepest-descent with tf = 60 sec and the bounds on each of
the control components equal to .206 deg/sec2 . These additional
cases were prompted by the desire to gain deeper insight into the conver-
gence properties of the method. Figure 6-11 represents the response to
a first guess of control switching times starting from the initial
conditions X = O for 1=1,...,7 . The solution to this problem is,
of course, that no control should be applied and that the states will
remain identically equal to zero. After 4 iterations the pulses have
been collapsed, the state vector remains at the origin, and no fuel is
consumed. The resulting zero states and the zero-width control pulses
are not presented in a figure. Figure 6-12 represents the response from

the initial conditions of Run R-3 Table III after 13 iterations. The

fuel consumption is .0546 sec™™ vs. .158 sec”l as in the idealized

ko




Table V. Data for Curves A and B in Figure 6-10.

Curve t,, sec 30 45 60 90 120
A x(ty), sec™ 1809  .1299  .1075 .0915  .0T69
A xl(tf)/.lhz 1.275  .915 757 645 .5h1
A No. of Iterations 20 13 18 11 14
B xl(tf), sec L1969 L1595 102k
B xl(tf)/.260 .756 614 .394
B No. of Iterations 26 15 11

proportional control case. Notice that no control is reQuired in two
of the three axes. Figure 6-13 indicates the response from the initial
conditions of Run R-4, Table III after 15 iterations. Fuel consumption
is .0906 sec-l vs. .175 sec_l . The final Figure 6-1k indicates the
response from initial conditions of Run R-5, Table III after 15 iter-
ations. TFuel consumption is .0705 sec-l vs. .095k4 sec-l . In each
of the above runs which use the idealized proportional control it takes
at least 180 seconds to acquire the desired orientation within acceptable
bounds.

By examining the solutions generated by the method of steepest-
descent one finds that the control components are usually off at

t = tz and at t =t, . Experience has shown that the true optimal

solutions usually contain control components which are on at t = to
and t = tf . The solutions generated by the extended method of

steepest descent seem to apply to problems with the same constraints

but with shorter time periods, (tf - to) , than the problems which

11



are being studied. It is not clear how to influence the leading and
trailing switching times to more closely approach t = to and t = tf

when they should approach these times.

2. Computational Considerations

There are a number of important aspects which must be con-
sidered when using the extended method of steepest-descent. The
minimum-fuel, scalar control of the "l/s2 plant” was studied extensively
by means of the extended method of steepest-descent. The specific
results will not be discussed here; however, the bases for many of the
computational considerations presented below were formed as a result of
this preliminary study. The success of the method depends to a large
degree upon qualitative characteristics of the first guess of the
switching times. After a period of trial and error it was decided to
use a total of twelve switching times (six pulses of alternating polarity)
in each of the three control channels as the basic form of the control
time history. It is better to start with too many pulses for they can
be collapsed by further iterations; whereas, if too few pulses were
chcsen convergence would become impossible since no provision has been
made to create new impulses. In most cases, the polarity of the first
pulse in each axis should be specified with & sign opposite to the sign
of the initial rate about that axis. If the initial rate is zero then
the polarity of the first pulse should be specified with a sign opposite
to the sign of the Euler parameters corresponding to that axis. This

1ecommendation is summarized by:

Lo




- sgn[xi+l(to)], if xi+1(t0) £0
sgn(first pulse of ui) =

- sgn[xi+h(to)], otherwise

for i =1,2,3. This recommendation was formed as a result of the study
of the l/s2 plant, and was found to be most important for the systems
studied in this text. The reason for the importance of choosing the
initial polarity is that when the above recommendation is followed the
initial pulse has only to be widened or narrowed by subsequent iterations;
whereas, if the polarity is chosen in the opposite sense then the first
pulse has to be removed by iteratively moving the first two switching
times until they are equal to to » and then widening or narrowing and
and shifting the second pulse. This latter choice requires many more
iterations_for convergeﬁce; indeed, convergence may not be possible.
This recommendation has an intuitive basis: if one is leaving the
origin or is located away from the origin then the first logical action
is to oppose this situation.

. It was also found that an initial equal distribution of relatively
narrow pulses as in Figure 6-2b offered the best initial guess of switch-
ing times for most cases. In several cases this stendard initial guess
of the switching times drove the state vector through the singularity
at §(t) = 180 deg . Since values of Eh are stored at a finite set
of times, the chance of storing a zero value for Xg is small; however,
it was decided not to take this chance. The initial guess was then
slightly modified by making the initial pulses on each control channel

a little wider; thereby avoiding the singularity.
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As can be seen from a comparison of Figures 6-2 and 6-3 as well as
Figures 6-8 and 6-9, it is not important to obtain an initial trajectory
which in any way satisfies the terminal constraints; the extended method
of steepest-descent may converge to the desired terminal constraint in
as few as 6 iterations.

Experience in using the method of steepest-descent to solve the
acquisition problem leads to several recommendations concerning the

digital simulation:

i. As discussed in Chapter V and Appendix B, to appearing in
(B-21) may become equal to t and take on discrete values between to
and tf . It was found that although this "sampling" technique reduced
the number of iterations required for satisfactory convergence, the
additional time to perform each iteration more than overshadowed the
reduction in iterations. The additional time for each iteration was due
to an additional matrix inversion for each sample time. The sampling
techniqﬁe was not used for the majority of runs.

ii. If the magnitude of any of the components of the &) vector
of (B-3) becomes too large due to an initial bad guess on the control
time history then convergence is not possible. It was found that by
limiting each of the components of S@ to some nominal value (.5 deg/sec
for the rates and .5 for the Euler parameters) then for most cases
practical convergence is assured.

iii. The cost-weighting matrices, Ti , must be specified.
Since the paremeters of the problem do not change markedly over the
period of solution the Ti and T, , matrices are assumed equal. For

J
the off nominal design featured in Figures 6-8 and 6-9, where the control

Ly
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accelerations are unequal, speed of convergence was tested for the case
where the elements of each Ti were chosen either to weight the change
in total control impulse or to weight the change in switching times. The
latter means of weighting provided the most rapid convergence and so for
all runs the Ti matrices were specified as unit matrices.
The convergence procedure for the method of steepest-descent which

proved most effective was to ignore the cost functional in the constraint

§ of (B-1) for the first iterations until the terminal constraints
were met. Typically this took 6 iterations. Then a desired value of the

cost functional, ¢

g ° vas selected which was about 50% of the value of

the functional resulting from the above set of iterations, and about 4
more iterations made. The value of ﬂd was purposely set low enough

to be well below the optimum value. It was found that the constraint on
the states could not be met, and that some value of the cost functional

;» which was above the @_. wvalue. Next the @. value

d d

was ignored in the ﬁ vector and the only constraint that was attemped

was reached, Q&a
to be met was that on the states. This final set of iterations (usually
about six) then achieved convergence to the terminal constraint while
giving a value to the cost functional @ close to gda . The final
trajectory was then taken as an "optimal trajectory" as computed by the
method of steepest-descent.

Convergence to a desired trajectory was difficult when the value
of the interval tf - to approached to within 50% of the time for the
minimum-time solution. It took 26 iterations to give the response in

45 sec vs. 11 iterations for the response in

Figure 6-5 when tf

Figure 6-6 when t 120 sec . Similarly for a fixed t_. , when the

f f
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bounds were reduced on the control components the minimum-time solution
was approached and convergence became much more difficult. It is not
clear why this approach to the minimum-time solution causes these con-

vergence difficulties.
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Figure 6-1b
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Figure 6-6b.
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Initial Conditions of Run R-2.
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Figure 6-12b.
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VII. ACQUISITION PROBLEM: LOW CONTROL TORQUE, ROTATING REFERENCE FRAME

The mathematical model of the system studied in this Chapter is
found in (4-4) and (A-26). This model is much more complex than that
used in the preceding chapter. 1In this chapter the object 1s to control
the attitude of the satellite in a rotating reference frame while the
spacecraft is being disturbed by the gravity gradient moments (A-22).
The control torque levels are of the same order of magnitude as the

gravity gradient disturbance torque.

A. OPTIMAL CONTROL FOR COMPARISON PURPOSES

True optimal state trajectories are generated by selecting

values of the adjoint veriables at t =t and integrating the differ-

f
ential equations (4-4), the adjoint equation (A-25) and (A-26), and the
control equations (2-9) backwards in time from t = tf . The terminal

constraints on the states at t = tf are employed here as well. Satel-
lite data found in Table I is used. The parameters d, 1in (4-4) are
chosen to be equal to one. The bounds on the control components are
selected to give equal angular acceleration in each of the three axis
and to have magnitudes equal to twice the value of the maximum disturb-

ance due to the gravity gradient. The control accelerations are there-

fore each:
= 1.905 X 107" deg/sec2 , (7-1)

for 1i=1, 2, 3 . As of June 1965, the lowest thrust level available

from a cold gas propellant system was .005 1b. [Ref. 7-1]. To provide
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the control acceleration level of (7-1) with the satellite moment of
inertias of Table I, the lever arm for the gas Jets would have to range
between .53 ft and .2 ft., when using a thrust level of .005 1b., These
moment arms are an order of magnitude too small for practical purposes.
This design difficulty will be ignored in this study since the primary
goal here is to obtain analytical insights into the present optimization
problem.

Two sets of orbital parameters are used in this Chapter. Table VI
contains a summary of these data. The orbit described in Set 1 is used

to generate the true optimal trajectories. The two orbits appear in

Figure 7-0.

© 0

(a). €=0052I (b). €204
FIGURE 7-0. TWO ELLIPTICAL ORBITS

The initial and terminal conditions and the fuel consumption are
listed in Table VII for the two true optimal control runs.

A statement is found in Table VII as to whether or not the desired
state at t = tf is an "instantaneous" equilibrium point. It is

convenient to make the following definition:
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Table VI. Orbital Parameters

Set 1 2
€ .0521 A
Appogee, mi Les51 9750
Perigee, mi 4190 L4190
a, mi Lhoy 6970
n, sec™t 1.05136 X 107> 5.32 X 107
Period of 99 196
orbit, min

Radius of earth, mi 3960

M, slug k.11 x 10°°

G, 1b £t° slug'2 3.42 X 10'8

DEFINITION I: If there exists an n X 1 state vector Eé at

t = tf for the system of differential equations

; = ?(;:E)t)
such that
9 = .f_‘(;e) Q,tf)

then x X (tf) is an instantaneous equilibrium point of the
e e

differential equations.

By substituting the desired terminal states, Xo = t00 = Xy = 0 and xg =2
into the differential equations (4-4) at t = t, , setting u, =0 ,
and examing the eight derivatives xi, cee xé it 1s seen that all of

these derivatives are equal to zero except x&
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Table VII.

Data and Results for the True Optimal Control Runs

Run R -6 R-7 l
I

to’ sec [¢] 0 ‘
ta, sec 1196 1674
8(t,), deg -77.8 85
G(tf), deg 0 180
Orbital Parameters (Table VI) Set 1 Set 1

x(t) x(tg) x(t,) x(to) x(t,)
x5 sec™t 0 1.5149 x 1073 0 4.8029 x 1073

-2 -3
Xy deg/sec 3.8 x 10 0 -7.25 X 10 0
- =7

Xg) deg/sec -7.27 X 10 0 8.8 x 10 0
x5 deg/sec 344 x 1072 0 L1263 0
x5 .218 o] .19k o]
X .638 o] 664 o
x, .104 0 -.h12 0
xg 1.88 2 1.831 2
%g -5.1x 1078 0 5.2 x 1072 0
X0 .986 .9k79 .993 1.0521

X(tf) :
A () -1 -1
A (tg) 1.05 1.05
xs(tf) -1.05 -1.10
xh(tf) 1.05 1.05
%s(tf) -2 -2
Re(te) 2 1
x7(tf) -2 -2

2 -4 -4

Control bounds, deg/sec 1.905 X 10 1.905 X 10
Instantaneous equilibrium

point at t = tf yes yes
Vs deg 40 48
Vps deg 8o 124
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x) = -8" = [2(1-62)1/2 x9]/(xlo)3 (7-2)

By requiring the above states (x2 ==Xy = 0, xg = 2) to be met at
t = tf , and requiring that t = tf occur at appogee or perigee where
x9 = R' = 0 , the desired states are made to represent an "instanta-

neous" equilibrium point of the set of differential equations.

Table VII contains reference to two sets of angles, V_ and WI

R
wR represents the total equivalent rotation between the initial and the
final states, measured with respect to the rotating reference frame
(xr,yr,zr) ; whereas, WI denotes the total equivalent rotation
between the initial and final states*, measured with respect to the
inertial reference frame (xe,ye,ze) . The latter quantity is more
meaningful for this study, since the total rotation in inertial space
accounts for the primary expenditure of fuel.

Time responses depicting the two optimal state trajectories are
found in Figures 7-1 and 7-3. For the figures to be perfectly correct,
the control should not have been turned off at t = t . The symbols

f
and units for the figures in Chapter VII are described in Table IV.

*Several ways exist to compute the total rotation in inertia) space.
Perhaps the most direct is to express the transformations between the
various reference frames in terms of direction cosine matrices and then
multiply these togbther to obtain a single transformation matrix. As
discussed in Ref. A-2 the total equivalent rotation, V(t) , for this
single transformation at a fixed time t is found by equating the trace
of its matrix with the expression 1 + 2cos ¥(t) , and then solving for

¥(t) . The trace of a matrix is equal to the sum of the elements on
the main diasgonal.
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B. STEEPEST-DESCENT SOLUTIONS

The extended method of steepest-descent was used to generate
solutions to the optimization problem for a number of sets of initial
conditions and orbital parameters. The same computational techniques
were used to generate the solutions in this Chapter as in the prior one.
Two runs were made starting from the sets of initiasl conditions of Run
R-6 and Run R-7 above. Table VIII summarizes the steepest-descent solu-
tions, and compares them with the true optimal solutions. As seen from
a comparison of the relevent figures the true optimal trajectories are
quite similar to the trajectories generated by the method of steepest-
descent. The control pulses are placed in different positions, thereby
contributing to the higher cost of the latter trajectories. All of the
trajectories generated for this chapter come to within the acceptable
distance (6-2) of the desired terminal state. As discussed in the
literature on the method of steepest-descent, this method is useful in
computing a state trajectory which is nearly optimal; however to come
closer to the optimal solution another technique such as the method based
on the second variation. must be resorted to. In the case where the
control is continuous the matrix C(to) in (B-12) becomes singular as
the optimal control is reached; however, when the control is bounded and
the switching times are treated as control parameters the matrix D(to)
will usually not become singular when the optimal is approached.

It was decided to generate a steepest-descent solution to an acqui-
sition problem with control acceleration bounds set at 25% of those in
(7-1) (50% of the maximum value of the gravity gradient disturbance).

The data for this problem is found in Table IX, Run R-8. The resulting
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Table VIII. Comparison of True Optimal Solutions with Solutions by
Method of Steepest-Descent.

Initial Conditions of Run: R-6 R-T
-1 . -3 -3
xi(t.), sec "(optimal): 1.5149 X 1077 | 4.8029 x 10
-1 -3 -3
Xl(tf)’ sec (steepest-descent): 1.7012 X 10 5.5577 X 10

% that steepest-descent is higher

than optimal: 12.3 15.7
Number of iterations* for steepest-
descent solution: 15 3

Optimal solution found in

Figure: 7-1 7-3

Steepest-descent solution found

in Figure: 7-2 7-4

*An iteration takes approximately 36 seconds for the mathematical
model considered in this chapter.
state trajectories are found in Figure 7-5. Even with the low control
acceleration levels acquisition is possible. No comparison was made
between this solution and a true optimal one.

Another problem which was solved by the method of steepest-descent
is described in Run R-9 of Table IX. The data are the same as in Run R-6
except that some arbitrary set of nonzero terminal constraints is spec-
ified. After 25 iterations the solution is found in Figure 7-6. Since
the equivalent rotation in Run R-9 is greater than in Run R-6 the cost
should be, and is, higher.

The influence of the orbital parameters is demonstrated by the five

runs summarized in Table X, and Figures 7-7 through 7-11. Each run has
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Table IX. Data and Results for Runs R-8 and R-9
Run R-8 R-9
t , sec 0 o]
o
tf, sec 2869 1196
e(to), deg -92.4 -77.8
e(tf), deg 92.4 0
Orbital Parameters (Table VI) Set 1 Set 1
=iy, — = = -
x(t): x(to) x(tf) x‘to) x(tf)
X sec™t 0 3.5755 X 1072 0 4.2533 x 107°
X, deg/sec -5.45 x 1072 0 Same o]
g deg/sec L1104 0 as 0
%y, deg/sec 9.3 X 1072 o in 0
-2 Run
x5 -7.3 X 10 0 o]
xg -1.053 0 R-6 -.5
-.b52 0 .6
X7 5
xg 1.6k 2 1.8%
%g -5.2 x 1072 5.2 x 1072 0
%10 .999 <999 .9479
No. of iterations 29 25
Control bounds, deg/sec2 L76 x 1o'l+ 1.905 X 10'1‘L
Instantaneous equilibrium
point at ¢t = tf no no
WR’ deg 70 Th
Yy, deg 210 121
Results in Figure: 7-5 7-6

83



Table X. Effect of Varying Orbital Parameters

Run R-10 R-11 R-12 R-13 R-14
G(to), deg 0 180 0 90 180
e(tf), deg 147 320 119 150 218
Orbital Parameters

(Table VI): Set 1 Set 1 Set 2 Set 2 Set 2
xl(tf) x10° , sec™t || 5.4543 4.9618 | L4.5515 | 3.5046 | 2.921
No. of iterations 26 13 20 21 13

-h =4

Control ‘——-1.905 X 10 ——pe | 1.955 X 10 —
bounds, deg/sec2
Vis deg 104 100 82 54 54
Results in Figure: T=-7 7-8 T7-9 T-10 T-11
Common Data:

to : 0,

tf : 2400 sec

Initial Conditions: X, =0, x, = X5 = X, f .01 deg/sec, Xg = Ay,

Xg = Xq = 8, xg = 1.6
Terminal Conditions: x2 =+ = x7 =0, Xg = 2
Instantaneous
equilibrium pt., t =1%t_ : No
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common initial and terminal constraints and a common time period. The
amount of fuel consumed, xl(tf) » 1s plotted in Figure 7-12 against
the total equivalent rotation in inertial space, WI . A good correl-
ation exists between the two quantities as is expected.

The extended method of steepest-descent makes it possible to compute
approximations to extremal trajectories in each of the above cases in
spite of the fact that the control torque is low, that the terminal
constraints do not represent an instantaneous equilibrium point, or that
the orbital eccentricity is high. Several more runs were made to
investigate more fully the capabilities and limitations of this method :

i. An initial guess of a nominal control time history was made
which closely approximated the optimal shown in Figure T7-1. After
29 iterations convergencé to the set of terminal constraints was not
achleved. This result supports the conclusion, discussed in Chapter VI,
that many more switchings than the optimal number are needed for efficient
usage of the extended method of steepest-descent.

ii. One pulse was removed from the above initial nominal control
time history and the extended method of steepest-descent used. It was
found that the D matrix (B-17) became singular, since not enough pulses
existed to control the satellite to the desired terminal constraint.

i1i. The exact switching times were used as an initial guess of a
nominal trajectory. Even though a true optimal trajectory was present
the D matrix did not become singular. The reason that this did not
occur is due to the way in which the optimal control has been simulated
in the method of steepest-descent. The true optimal control should not
be switched off at t = to and t =t in most cases. There exists no

f

way to leave the control on at to or t in the present version of

f
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the extended method of steepest-descent; therefore, the control as seen
by this technique is not the same as the true optimal, even though the
state trajectories are identical. The true optimal control and the
control that is simulated in the method of steepest-descent are found

in Figure 7-13a and Figure 7-13b, respectively.
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Run R-6 (Table VII).

True Optimal Response Curves,
Compare with Figure 7-2.

Figure 7-1a.
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Figure 7-1b.
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Response Curves Generated by Method of Steepest-Descent

for Initial Conditions of Run R-6 (Table VII).

with Figure

T-2a.

|

Figure




i
t
i I
i *
~4-+3
I I
T
i
T
|
I I
i N ;
T T
—+4 i : | I
I 1] .Y I ! I NN 1
T P BUS Il LI H ! ! T I
+ t Tt = t 7 T t LRI SN B B 1

Figure 7-2b.
91



==

|
i
m‘cT
i
1
!
RS
11‘
Pl
oge
R
I
|y
L
f"Yj
P

\\\

i1

— R \ —— e —— -
: = pp S— ] NSRS snemnene 12 S
oo oo o8- | o0 D0o! | 0OSfL- | 00O[S |- 00O | D00~ -
: BTt e L SR S 1IL R, S

e e 1 8

i
1
L

an
111
1
1

I
t

1
i
;\
I
|
-l
i
B RRN
il
|

3

I
B
1
!
ap
[
!
1y
[

)

Run R-7 (Table VII).
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True Optimal Response Curves.
Compare with Figure 7-4.

Figure 7-3a.
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Figure 7-3b.
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Response Curves Generated by Method of Steepest-Descent

for Initial Conditions of Run R-7 (Table VII).
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Figure 7-4b.
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Response Curves with Low Control Tor
(Table IX).

Figure 7-5a.
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Figure 7-5b.
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Run R-9 (Table IX).

Figure 7-6a.



Figure 7-6b.
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Run R-10 (Table X).

Figure 7-7a.
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R-11 (Table X).

Figure 7-8a.
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Figure 7-9b.
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Run R-13 (Table X).

Figure 7-10a.
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VIII. CONCLUSIONS

A. SUMMARY OF RESULTS

1. Development of an Extended Method of Steepest-Descent

By extending the method of steepest-descent to solve
problems which contain bounds on the control components, by moving the
switching times about, & new computational tool has been developed.

This extended method of steepest-descent was used to solve the minimum-
fuel optimization problem for two nonlinear, sixth-order mathematical
models. Insights were gained during the solution of these optimization
problems which led to & number of recommendations concerning computa-
tional procedures. It was found that an initial guess of the control
time history should contain many more switching times than the optimal
number. In addition convergence to the optimal solution was improved

by selecting the sign of the first control pulse in each axis to be of
opposite sign to that of the initial rate about that body axis. It was
also found that even if the initial nominal control time history resulted
in a state trajectory which badly missed the terminal constraints,
subsequent iterations rapidly improved the initial guess. The derivation
of the extended method and a list of computational procedures or consid-

erations is found in Chapters V, VI and in Appendix B.

2. Computation of Optimal Trajectories for the Spacecraft
Attitude Acquisition Problem

The extended method of steepest-descent was used to
generate approximately optimal trajectories for the spacecraft attitude

acquisition problem. 1In Chapter VI the state trajectories generated by
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‘this method are compared with those generated by an idealized 3 axis
proportional state feedback control system. It was found that trajec-
tories generated by the former technique consumed less fuel, acquired
the desired orientation more quickly and used lower control torque
magnitudes than those required by the feedback scheme.

In Chapter VII a comparison is found between trajectories generated
by steepest-descent and true optimal trajectories. The extended method
of steepest-descent provides similar trajectories which satisfy the
terminal constraints while using as much as 15% more fuel than optimal.
This method may be computing trajectories which are only relative
extremals and not absolute extremals. This computational technique
repeatedly has produced control time histories which contain periods
of no control about each body axis near t = to and t = tf . This
characteristic has in all probability contributed to the 10 to 15% higher
cost of these trajectories. The extended method of steepest-descent
usually does not experience the difficulty of inverting a D matrix which
has become singular when an extremal trajectory is approached.

It is not practical to generate an optimal control time history on
board a spacecraft with present state-of-the-art computérs since it
takes as much as 15 minutes to compute a local extremal by the extended
method of steepest-descent. However, a primary contribution of this
report is the conclusion that the extended method of steepest-descent
can be used to generate a set of nearly optimal state trajectories,
starting from a finite set of arbitrary initial conditions, which may

be used as design goals or standards for sub-optimal acquisition control

schemes.
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Chapters VI and VII contain many variations of the orbital parameters,
initial conditions, terminal constraints, reference frames and control
parameters. It is found that as long as the initial state trajectory
or the optimal state trajectory does not pass through the singularity
which occurs when the total equivalent rotation with respect to the
desired orbital reference frame, WR ; equals 180 degrees, then

convergence to an approximately optimal trajectory is possible.

B. RECOMMENDATIONS FOR FUTURE STUDIES

In this study the method of steepest-descent has been sucessfully
extended and near-optimal trajectories generated for the spacecraft
attitude acquisition problem; however, there are still some open questions
of real importance:

i. Can convergence to an optimal solution be improved?

It might be helpful if a computational method based on the second varia-
tion be derived to handle problems which contain bounds on the control
components, and which contain pulses as the basic form of the control
time history? Convergence to an extremal trajectory would then most
likely be improved for this class of problem.
ii. Can a useful general purpose digital computer program be

written based on the extended method of steepest-descent?
By being able to rapidly incorporate a specific system model into a
general digital program one could readily obtain near optimal trajectories.

iii. What modifications are required to the digital simulation so

that minimum time problems can be studied?

*A computational method such as this has recently been developed

[Ref. 8-1]. This new method has been used to devise feedback control
schenes.
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At present the stopping condition for the forward numerical integration
is difficult to express for time optimal problems.

iv. What feedback control laws provide good approximations to
the optimal control?
It would be of interest to experiment with feedback control schemes for
the satellite acquisition problem which might closely approximate the
nearly optimal trajectories that are generated by the extended method

of steepest-descent.
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APPENDIX A: DERIVATION OF SYSTEM EQUATIONS

In this appendix coordinate systems are introduced and the equations
of motion of a satellite are derived. The cost functional for optimal

control is discussed and the adjoint equations are developed.

1. Coordinate Systems

In discussing the motion of a satellite in an orbit about an
attracting body such as the eart! certain coordinate frames are important.
The three most important reference frames will be described in this
section.

Figures A-1 and A-2 indicate the coordinate systems chosen in the
development of the equations of motion. It is assumed that the attracting
body is an inertially fixed point mass located at P, and that the center
of mass of the satellite at P* moves in either a circular or an elliptical
orbit about the point of attraction. Figure A-1 shows two of the right
handed cartesian coordinate systems in addition to the geometry of the
ellipse., The origin of the (xe,ye,ze) axes 1is located at the point

P with zél. to the plane of the orbit and the X,»¥, Dpair oriented
arbitrarily in the orbit plane. The (xr,yr,zr) coordinate frame is
centered at P¥ with zr“ to z, - The (Xr’yr’zr) frame will be

referred to as the orbital reference frame and may have one of two

possible orientations for the purpose of this study: it may remain
parallel to the inertial reference frame or it may chenge its orientation
such that X always remains parallel to the local vertical, which is
equivalent to saying X, remains in the direction of the radius vector

T from P to P*x
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FIGURE A-1, ORBITAL AND INERTIAL

REFERENCE FRAMES

P

FIGURE A-2. ORBITAL AND BODY FIXED
REFERENCE FRAMES
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A final reference frame of interest, shown in Figure A-2 and called

the body fixed reference frame, is the (xb,yb,zb) set, which is
centered at P* and fixed to the satellite's centroidal principal axes
of inertis.

Unit vectors parallel to each of the axes above will be denoted by
the vector n with appropriate subscripts. For example, ;xr denotes

the unit vector parsllel to the X, axis.

2. Equations of Motion

a. Orbital Equations
Equations describing the motion of the center of mass of the
satellite at P*¥ 1in an elliptical orbit about the point mass P are

presented here [Ref. A-1]. By introducing the change of dependent

variable
R =1r/a (A-1)
where a = the major semidiameter
r = the distance from P to P*

and the change of independent variable
T =nt
where
- (m/a3)l/2
G = the universal gravitational constant
M = the mass of P

the desired form of the differential equations is written:
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R' =V
(A-2)

V' o= [(1-€7)/R°]-RZ

i

where

€ = the eccentricity

( ) a( )

= ar

The two equations (A-2) may then be integrated on the digital computer
at the same time as the dynamical equations that describe the attitude
motion of the satellite. The initial conditions for (A-2) are conven-

iently expressed in terms of 90 = G(TO) and €

R(TO) (1-62)/(1 + € cos 90)

2y1/2 (a-3)

]

V(To) € sin 90/(1-6

Ref. A-1l provides two additional algebraic relationships for the first

and second derivations of ©

o (1_62)1/2 R2

[

(A-1)

o" VRS

_2(1_62)1/2

6 1is the angle between X, and x, as shown in Figure A-~1l.

Differential equations (A-2) with initial conditions (A-3) and
relations (A-4) provide the necessary equations to specify the orbital

characteristics as required by the dynamical equations of motion.

b. Dynamical Equations

Euler's dynamical equations [Ref. A-2] may be written as:
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‘B B.B
- - w- = N
I W, (Iy Iz)wy z N
‘B B B
- - W =N A~
Iywy (IZ Ix)wZ < . (A-5)

]

BwB

B
- - N
Izwz (Ix Iy)wx y A

where Ix’Iy’Iz are the centroidael principal moments of inertia of the
body, Nx’Ny’Nz are the components of external torque, and wﬁ:wi;wf
are the components of the total inertial angular velocity of the body.

The total inertial angular velocity of the body, resolved in the

(Xb’yb’zb) frame, can be expressed as

B B- B— B—
= + + . -
W WDyt Tt 9Dy (a-6)

When the orbital reference frame is rotating as discussed in Section A-1,

the angular velocity of this reference frame, GR ; becomes

= én . (A"?)

A third angular velocity is of interest, the angular velocity,
GB/R ; of the body with respect to the orbital reference frame. This

is related to the above angular velocities by the vector equation:

BR L BIFR (A-8)

When this angular velocity is resolved in the (xb,yb,zb) reference

frame it may be written as*:

GB/R
2 xb 3 yb

b (A-9)

*Use 1is made here of state space notation for simplicity of
presentation.
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It is necessary to consider the transformation to the body
fixed coordinate frame from the orbital reference frame which may be

expressed as:

ENERE 71 R -
Db 11 %12 % Elxr E—
- _ _Xr
Doy = a5, 85 8,4 By = A nyr (A-10)
n a a a n Ezr ?
ZEJ L_Sl 32 33 zZT |
where the aiJ components of the matrix A are direction cosines. The

on implied by the orthogonal matrix of transformation A describ-
ing the physical motion of the rigid body is a rotation.

After these preparations the dynamical equations (A-5) can be
expressed in terms of the relative angular velocity components of (A-9)
and the direction cosines in (A-10). By using equations (A-6) through
(A-10), the three components of total inertial angular velocity may be

written as

B .
wx = x2 + Gal3
WB = x, + 9.& (A-ll)
y 3 23
B .
wz = xll’ + 9833

As may be seen from (A-5), the time derivatives of the expressions in

(A-11) are required. These are

lB L] e .o

wx = X, + ea13 + Gal3

W = x, +6a_ +6a (A-12)
y 3 23 23

B = %, +ba,. +6a

Z L 33 33
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By combining (A-5), (A-11) and (A-12) and meking use of the

definitions of the inertia parameters:

I -1 I -1, I - T,
K = I » Ky = T > K, = T | (A-13)

three differential equations for the relative angular velocity components

may be written:

>
]

5 N'x/Ix - ba, . - 6a 5 - Kz(x3 + 6a23)(xh + eass)

Xg = Ny/Iy - 08y, - Oa,, - Ky(xu + 6333)(x2 + eals) (A-14)
X, = N /I, -0ag - bag, - K (x, + 0a),)(x; + 6a,)

Before these equations may be solved, the external torques must be
defined, initial conditions must be specified, and equations for the
direction cosines and their derivatives have to be written in terms of
kinematical representations such as direction cosines, Euler angles or

Euler parameters.

c. Kinematical Equations
Extensive study has been made in the recent literature

[Ref. 3-1, A-3] of the relative merits of various schemes to describe
and to compute the spacial rotations of a rigid body. These references
state that for the present problem of determing the large angle maneuvers
of an unsymmetrical rigid body and controlling the three body-fixed axes

(xb’yb’zb) to a specific orientation in space, Euler parameters pro-
vide the most useful characteristics for analysis and for simulation.
One of the reasons for this recommendation is that the classical and the

non-classical Euler angles create singularities in the equations at O
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and at 90 degrees of rotation respectively; whereas, when integrating
the equations of motion and their adjoint equations using Buler para-
meters, the singularity does not appear until the total rotation as
described by the transformation A approaches 180 degrees. For the
present analysis rotations up to 180 degrees are to be considered‘and a
scheme which avoids a singularity in numerical integration for smaller
rotations is essential. A further reason for using Euler parameters

is that only algebraic relations appear in the expressions for the
derivatives in contrast to the appearance of trigonometric functions
when Euler angles are used.

One disadvantage of Euler parameters is that they bear little
relation to the physical situation. One cannot readily measure Euler
parameters as would be required in a practical feedback scheme which
would use them to provide attitude information. The direction cosines
or Euler angles are easily measured from sensor outputs and, of course,

a transformation to Euler parameters could be made; however, this trans-
formation would cause additional complexity in the feedback system. In

spite of this limitation of the Euler parameters they will still be used
in this primarily analytical study.

The next step, then, is to express the matrix of transformation A
of (A-10) in terms of the Euler parameters and to obtain suitable differ-
ential equations for them. Except for the case when A =1I , the identity
matrix, or when the rotation implied by A is through an angle which is an
exact integral multiple of II , the matrix A has three distinct eigen-
values. One of the eigenvalues is always +1 . Now denote by e the eigen-

vector of A corresponding to the eigenvalues +1 and define its magnitude
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to be 1 . This unit vector has the same components in either the
(xb,yb,zb) or the (Xr’yr’zr) coordinate frames, viz. epreyre,

[Ref. A-2]. This vector corresponds to the direction in space about

which a single rotation through an angle { could be made which would

yield the rotation implied by A . The four Euler parameters are

defined as (see Ref. A-4):

W,o= 2 cos(¢/2)ex
W, = 2 cos(¢/2)ey (A-15)
W, = 2 cos(¢/2)ez

W, = 2 sin (p/2)

These four parameters are not independent, for a quick calculation

reveals that

L
E: wi = L4 (A-16)

i=1

therefore, there exists but three independent Euler parameters corres-
ponding to the three degrees of freedom of rotation. The direction

cosines may be expressed in terms of the Euler parameters [Ref. A-3]:
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11

12

13

21

22

23

31

32

33

1/2(w2w1

1/2(w3wl

1/2(w1w

1/ (W +
I/ A 2 v

1/2(w W,

1/2(wl'w3

1/2(WéW
1/2(w2
1/4(v>

3
3

+ W Wh)
+ WQWL)
- wlwu)

)-1

%
LA

2

(A-17)

Four differential equations for the Euler parasmeters are given below

[Ref. A-3]:

=
1

1/2(x2WL - XMWy + xuw2)

l/2(x We + x

AW, - x,0)

l/2(-x Wy + x W+ x, u)

1/2(-x W,

ws)

(A-18)

Examination of the dynamical equations (A-14) shows that three more

relationships are required, viz.
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By differentiating (A-17) and by making use of (A-17) and (A-18) the

following expressions are obtained:

813 = %y8z = Xz833
8oz = XyBzz " X813 (A-19)
83z = Xz8 3 " X85z

Once the torque and the initial conditions are known, the seven
equations, when (A-14%) and (A-18) have been combined, may be integrated
after use has been made of the relationships (A-17) and (A-19). An
alternative now exists: the seven differential equations may be inte-
grated to obtain the three components of the relative angular velocity,

X5 Xz and X, and the four Euler parameters, the algebraic relation
(A-16) being used to check the accuracy of integration; or one of the
Euler parameters may be eliminated from the differential equations, and
the resulting six first-order differential equations integrated. The
former method has been chosen, as the relative ease of integrating an
additional equation far outweighs the need for repetitve use of the
square-root function on the digital computer which would be the case if

(A-16) were solved for one of the Euler parameters and this parameter

eliminated from the differential equations.

d. External and Control Torques
Expressions are required for the components of external
and control torque Nx’Ny’Nz » in body coordinates. The three components
of the control vector U , which will be specified as a function of the

states or as a function of time, are assumed to act about the three
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principal axes. The magnitude of each of the components will be bounded
in some of the considered cases. It is assumed that there exist no
dynemics associated with the production of this control torque and that
the magnitudes of the bounds on the torque components may be arbitrarily
small.

A further term in the expressions for NX,N&,Né is the external
disturbance torques due to the gravity gradient. The disturbance torque
will be considered when its msgnitude and that of the control torque are
of the same order. The expressions for the torque components may then

be written as:

N = Iu +N
X X X Xg
N = Iu +N : (A-20)
Y yvy yg
N = TIu +NXN
Z zZ z zg

where g.x,uy,uz are the components of the control vector, and ng,N&g,
Nzy are the components of the gravity gradient torque. These components
are given in Ref. A-5 as:

ng = 3(GM/r3)(IZ - Iy)(Hxr . Eyb)('ﬁxr . Ezb)

Nyg = 3(GM/r3)(Ix - Iz)(er . ?1}{1))(?1'xr . Ezb) (a-21)

Mg = /NI, - L@ R )E R)

where the E%r vector, in the rotating orbital reference frame, is
parallel to the local vertical. By using the transformation A in (A-10)
and the definitions (A-13) and equations (A-20) the following expressions

for the ratio of torques to moments of inertia are written:
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3

N’x/Ix = u_+ 3(GM/r )Kxazla31
3

Ny/Iy = u + 3(GM/r )Kyalla31 (A-22)
3

Nz/Iz = u, + 3(GM/r )Kzalla21

These expressions are now ready for substitution in (A-14).

3. Minimum-Fuel Cost Functional

The cost functional J , which is to be minimized is an
integral (over a fixed time period) of the welghted sums of the amount

of fuel used for control,

e

J(u) = f (a;lu | + d2|uy| + 4 lu l)at (A-23)

t
0

where the weights di(i = 1,2,3) are for the most part assumed to be
equal, and the initial and final times, to and tf , are parameters

which are fixed for each specific case.

L., Summary of Differential Equations

The differential equations describing the orbital dynamics, the
attitude motion of the satellite and the minimum~fuel cost functional

are summarized in Chapter IV.

5. Adjoint Equations

The expressions for the elements of the matrix M found in
the adjoint differential equation X - -M:(T)X for the two sets of
differential equations (4-4) and (4-6) are found below. The above
form of the adjoint equation is only valid when the variational problem

possesses no subsldiary conditions on the states when 1 satisfies
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Td<T<:Tf [Ref. A-6]. Since the equation (4-5) is just a finite
subsidiary condition for the differential equations (4-4) and (4-6)
elther the adjoint differential equation must be modified, or the con-
straint equation (4-5) used in the differential equations (4-4) or (4-6)
to reduce the order of the state so that the adjoint differential equation
applies directly. The latter course is chosen for this study. A
further important observation is that the ninth and tenth elements of

x for the low torque case do not enter into consideration in forming
the adjoint equations as they have been introduced only as a convenience
in integrating the equations (h-h). In the light of the above comments
the adjoint system will be of seventh order for both of the systems of
differentlial equations.

The problem of a singularity in the adjoint system should be noted.

In what follows, observe that Xg appears in the denominator of
a large number of terms. From (A-15) it is seen that when the total rotation
approaches 180 degrees, Xg approaches O . This singularity limits
the present study to those trajectories which do not exceed 180 degrees
of rotation.

The elements of M(t) are determined by the following relation-

ship:

my = (afi/axj) 51,3 =1,0..,7 (A-24)

-—' - W c—
where fi is the 1th element in the vector x = f(x,u,t) and xj is
the Jth element in the vector x . The elements mij satisfy the
adjoint differential equation
|
X = M(T)X (A-25)
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They are evaluated on the nominal trajectory En as discussed in
Chapter II. Equation (A-25) is the adjoint system to §f= T(x,u,7)

As discussed in this appendix the number of degrees of freedom of
the rigid body 1is three; and therefore, when adding & cost functional
as one element of the state, the total dimension of the state is seven.

i and j in (A-24) will range from one to seven, with the fourth

Euler parameter Xg eliminated from X' = F(x,u,tr) prior to the partial
differentiation. Since x, (1 = 1,...,10) will be available for sub-

stitution in (A-ZM), the m may be expressed in terms of Xgs X

13 9°*10

after differentiation.

Two sets of expressions for the elements m are required: one

1J

for the low torque case, and one for the high torque case. These

expressions are found below.

Low Torque Case

mll = m12 = ... = ml7 = 0
ms = m51 = ... = m71 =0
Moy = Mgg =my =0
om,, = 29'a33 - 2Kx(xh + 6'a33)
om,, = -20'a,, - 2Kx(x3 + 6'a23) (A-26)
2mys = -0"E, - 26'x3x5(1 - Kx) - xue'El(l + Kx)
- K 6'(6'E a,, - 26'&23x5) + SKx(aElES + a5.E;)
2myg = - O"E, - 20'xx (1 - K ) - x,0'E5(1 + K,)
- Kxe'(G'E5a33 - 20'a,,.x.) + SK (ag,B¢ - a,E))

(continued)
130




2m.27

]

]

-6 E6 - xhe'E9(1 + Kx) - KX(G')2E9833
+ SKx(a21E8 + a31E7)
- 28'a,, - QK&(xu + 9'533>

' - !
20 84 2Ky(x2 + 0 313)

6"E. + x,6'E.(1 - K ) + 20" 1+K

t t - '
K&G (6 Ea,, - 26 alsxs) + SKyallE5

6"E5 + xhe'Eh(l - Ky) + 29'x2x6(1 + Ky)

(A-26 cont)

-k 0'(6'E - o9t -
K& ( ,Bzs = 26 al3x6) SKy(allEu + 2a31x6)

- 6"E9 + xue'E6(l - Ky) - K:y(e')2E6a33 + SKy(a

' - !
26 'a 2K (x5 +6'a

23 23)

- t - !
20 a 2Kz(x +0'a

3 2 15)

" 13 - -
20"x_ + X9 El(l Kz) x

5 6'E2(1 + KZ)

3

- tigt '
kK © (6 Ea . +6 Egags) + 8K a .E,

B ! - - '
20"xg + X0 ES(l Kz) X0 Eu(l + KZ)
- ! 1 ! -
K0 (6 E5a13 + 6 Euaes) + SKZ(allE6 2&21x6
t - 1
X0 E9(l - Kz) X0 E6(1 + Kz)

- gt ' -
K0 (6'E_a 5+ 0 E6823) + SKZ(a 2a

91 1157 21%7

*g
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where
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E. = Xy - x5x6/x8 (A-26 cont)
E6 = x5 + x6x7/x8
E7 = =- x8 + (x7)2/x8

E8 = x5 - x6x7/x8

(&)
]

The ten elements of x are available, and as a result 8',6" and aij

may be evaluated where required.

High Torque Case

The necessary expressions for the high torque case may be written

for convenience in the following arrsy:

N1 2 3 4 5 6] 7
1 0 0 0 0 0] 0 0
2 0 0] - Kxxh - Kxx3 O 0] 0
3 0] - nyh 0 - K X, 0 0] 0
L 0 - K x3 - sz2 0 0 0 0

my = 5 (a-27) *

6
7

i= 5)6:7

* See the low torque case for the expressions for 2m, s
13
and le)"')T
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APPENDIX B: STEEPEST-DESCENT

Equations are derived in this Appendix which describe how variations
in the terminal conditions and in the initial state ;(to) effect a
change in control history, both for the conventional method where the
elements of u are not bounded, and for the extended method where the

u are bounded.

J

l. Conventional Method

The expression for B8u(t) is derived here. From (5-2) it is
seen that by being able to compute Sa(t) » the new control history
u(t) may be found, since Gﬁ(t) is already known. The technique

that will be employed in this derivation is to minimize V(t) defined

in expression (5-15) subject to the & constraint of (5-14%) [Ref. 5-5].

For this purpose let t = t  1inequation (5-14). For the present
analysis to,w(t),SE,SE(tO),AT(tf,t) and G(t) are considered known.
The J vector here will contain, as its first element, the difference

between the cost functional @ and its desired minimum value ¢d ;

therefore, E becomes a p + 1 vector:

g - ¢d
v o= ¥y = 0 . (B-1)

¢p _J
Note that in most problems the actual value of ﬂd will not be known

beforehand. The matrix AT(tf,t) of (5-11) now becomes a (p + 1) X n

matrix since | has become a (p + 1) vector. Since the constraint
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E does not contain time explicity the variation in the augmented

vector § may be written as:
8 = blx(ty)] - Wlx (t)] (-2)

where the first term on the right indicates what E may be equal to on
the next iteration and the second term indicates the value of the con-
straint, resulting from the present nominal trajectory. By requiring
the constraint (B-1) to be met (to a first order approximation) on the

next iteration, (B-2) becomes:

8 = - lx (t.)] . (B-3)

where § is as defined in (B-1).
Minimizing V(to) subject to an integral constraint (5-14) is
equivalent to an isoperimetric problem in the calculus of variations

[Ref. A-6]. Therefore, mimimize the new functional V*

t .
f

v = f[saTw(T)aa - 1T (e, 7)6(r)BR( ) Tas

t
o

+ w8 - AT(t,t )B(t,)] (B-4)

f’to

where p = a p + 1 vector of constants. The first variation in (B-k4)

leads to:
te
SV = f[gaaTw(T) - WA (6, 1)a() 18 (8T ar (B-5)
t
o]
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For an extremum in V¥,8V* = O for arbitrary variations 5(5.13) . The

integrand of (B-5) must vanish leading to:

8L(t) = (1/2)W(£)6" (£)A(t,,t)u (B-6)

where ( )1 denotes the inverse of a matrix. Substituting (B-6) into

(5-14) gives

BT = A(tnt )8x(t ) + (1/2)0(t )u (B-7)

with the defining relationship:

te

oty = [ Ao e (At et (5-8)

t
o}

Thus the vector u may be written from (B-7) as:

W= 207N 8T - AT (1 )8R (¢ )] (B-9)

Finally the desired expression for ®u(t) is written by using (B-6) and

(B-9):

du(t) = w'l(t)GT(t)A(tf,t)c‘l(to)[8@ - AT(tf,to)BE(tOn (B-10)

As stated in [Ref. 5-5] the time to may possess discrete values te

or may be a running continuous variable t if so desired.

By defining two more matrices

L1<t) = w'l(t)GT(t)A(tf,t), an mX (p + 1) matrix
(B-11)

— -1 T .
LE(to) = C (tO)A (tf,to) > 8 (p+ 1) Xn matrix,
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equation (B-10) is written as

du(t) = Ll(t)C-l(to)5I - Ll(t)LE(to)SEKtO) (B-12)

Expression (B-12) describes how a variation in the augmented terminal
constraint, 5@ > and a variation in the state Eﬁl at t = to influence

& change in control history.

2. Extended Method

The expression for SE(t) is now derived with the elements of
U bounded. A similar technique from lhe calculus of variaticns is
employed here as in the section above; however, equations (5-23), (5-24)
and (5-25) provide the starting place in this case.

Minimize the new functional V#*

~T = T,T —
i

(B-13)
T--- . \e™y A1
+uolop - A (TpsT /OX(T /)

where Gi = G(ti) . The first variation of V¥ leads to:
-T T,T -
* = - . -
BV }:[ESu Ty - wA (tf,ti)Gi]sfsu(ti)] (B-14)
i

For an extremum in V*,8V* = O for arbitary variations in S(BG(ti)

Each term of the summation (B-14%) must vanish leading to:
du(t,) = 1/2T7'GTA(t.,t )u . (B-15)
i s RS S |

Substituting (B-15) into (5-24) gives
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8 = N(t_,t )oK(t.) +(1/2)D(t )u (3-16)

with the defining relationship:

T -1.T
D(to) = ZA (tf,ti)GiTi GiA(tf,ti) . (B-17)
i

Thus the vector u may be written from (B-16) as
T 2D'l(t )&y - AT(t t )8x(t )] (B-18)
o £ o

An expression for Bu(t) for this case may be written by using (B-15)

and (B-18):
- -1.T -1 - -
Bi(t,) = TG At )DTN(v )8 - AT(t .t )BR(t,)] (B-19)
By defining
Nl(ti) = T;lcfA(tf,ti), an m X (p + 1) matrix " (B-20)
N (t ) = D‘l(t )AT(t t ) a (p+ 1)X n matrix
2\ o £’ 70’ ? P :

the equation (B-19) is written as

- -1 - -
6u(ti) = N (t,)D7(t )8 - N (t )N, (t_)BR(t) (B-21)

Note the similarity between (B-12) and (B-21). Relationship (B-21)
provides information as to how the switching times must be changed from their

nominal values ﬁn(ti) before the next iteration is begun.
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3. Computational Techniques

A computation algorithm is presented here for application of
the method of steepest-descent to systems with bounds on the control

variables.

i. Guess a nominal control time history ﬁn(t),integrate the

system differential equations forward until t is reached, storing

f
the values of in(t) at a set of sufficiently small time intervals.

ii. Compute the matrix AT(tf,ﬁf) ; (5-13), and integrate
the adjoint system of (5-12) backward in time from Ty using lhe stored
values of in . Compute and store Nl(ti) at each of the switching

times ti

iii. If so desired, set t = to and allow t to become a running
variable with discrete values and calculate the matrices D(tk) of
equation (B-17) where te =tot,..t, with t < t, . In each case
the summation D(tk) is performed over all values of switching times

ti where tkStiStf . Invert the D(tk) matrices, and store these
resulting matrices along with the Né(tk) matrices.

iv. Integrate the equations forward again based upon a new

control history of switching times ﬁ(ti) = Sﬁ(ti) + ﬁn(ti) where

Sﬁ(ti) is calculated from (B-21). Again the variable t, may take
on discrete values to,ti,...,tr . The 6i(tk) vector is calculated
by (5-2) and the &) vector selected as in (B-3) for use in (B-21).
No attempt is made to improve the payoff function until further iterations
partially satisfy the terminal constraints. The new values of i(t),

based on the new ﬁ(ti) which has become ﬁn(ti) are stored
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as in(t) . This iterative procedure of forward and backward interation
and of updating the control variable and state variable nominal histories
is continued until convergence to a satisfactory trajectory is achieved.
In order to simplify the simulation it has been required that the
newly calculated switching times resulting from Bﬁ(ti) and equation
(5-23) retain their order in time for each component of the control
vector and the t, satisfy toSt =t., . As an example the set of

i i’k

pulses for the u, element may be changed from that of Figure B-la

i
to that of Figure B-1b. The pulses can expand and contract and even

collapse.
uj(t)
$ —t
to te
(a) ORIGINAL CONTROL
Ui(')
l I: t
to te

(b) SUBSEQUENT CONTROL

FIGURE B-1. INITIAL CONTROL AND SUBSEQUENT
CONTROL RESULTING FROM APPLICATION
OF METHOD OF STEEPEST-DESCENT
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Thesimulations in this report were performed on the Burroughs
B-5500 digital computer using Extended ALGOL as the programming language.
Tapes were generated on the B-5500 for plotting on a Calcomp plotter.

Numerical integration was accomplished by a subroutine called
Kutta-Merson which provides a variable step size control commensurate

with required integration accuracy bounds [Ref. B-1].
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